本课程转载自微信公众号“网优雇佣军”,欢迎订阅。

认识VoLTE

▊什么是VoLTE?


VoLTE即Voice over LTE,它是一种IP数据传输技术,无需2G/3G网,全部业务承载于4G网络上,可实现数据与语音业务在同一网络下的统一。换言之,4G网络下不仅仅提供高速率的数据业务,同时还提供高质量的音视频通话,后者便需要VoLTE技术来实现。

VoLTE相较2G、3G语音通话,语音质量能提高40%左右,因为它采用高分辨率编解码技术。VoLTE为用户带来更低的接入时延(拨号后的等待时间),比3G降50%,大概在2秒左右,而2G时代在6-7秒。此外,2G、3G下的掉线率时有发生,但VoLTE的掉线率接近于零。


因为对于语音业务,LTE的频谱利用效率远远优于传统制式,达到GSM的4倍以上。

另外,VoLTE与RCS的无缝集成可以带来丰富的业务。

VoLTE真正实现了端到端全IP语音,主要体现在:其空口IP化,由分组域提供承载,通过IMS进行会话控制。

VoLTE难点在于与2/3G切换流程相对复杂,是核心网电路域不IMS之间的切换,涉及IMS、电路域和LTE 核心网之间的互操作,即eSRVCC(enhanced Single Radio Voice Call Continuity)。

 

 

 

▊LTE的语音解决方案

目前有CSFB、单卡双待机、VoLTE/SRVCC等多种LTE手机语音解决方案。

CSFB和双待机方案,由2/3G电路域提供语音;

VoLTE方案,由LTE分组域提供语音,并通过SRVCC功能保证与2/3G话音平滑切换。

VoLTE/SRVCC和CSFB对网络有升级改造要求。


双待机为终端实现方案,其本身对网络无升级要求,为满足数据业务互操作,需对2G进行相关升级,但对终端定制化要求较高。

▊Volte业务特征

 

 

▊Volte与RCS的关系

RCS(Rich Communication Suite):电信运营商提供整套基于通讯录的呈现、即时通信、群组聊天、文件传送等在线通信应用,帮助运营商占据无线社匙市场主动地位,具有良好的互操作能力。

RCS-e(Rich Communication Suite-enhanced):实际为欧洲运营商联盟为了尽快部署RCS而推出的简化版本,语音仍基于电路域。

VoLTE语音、LTE高清可视电话、消息、甚至eSRVCC等均是独立的业务能力,而RCS是一个包含了多种能力的产品套件形态。

能力可以不基于RCS产品来提供,但结合RCS实现效果可能会更好。

▊SRVCC与eSRVCC

3GPP在R8阶段引入SRVCC/eSRVCC方案,在SRVCC方案中,由于需要在IMS网络中创建新承载,很容易导致切换时长高于300ms,影响终端用户体验。而eSRVCC方案相对于SRVCC方案的增强在于减少了切换时长(切换时长小于300ms),使用户获得更好的通话体验。
 

SRVCC:媒体的切换点是对端网络设备(如对端UE),影响切换时长的主要因素是会话切换后需要在IMS网络中创建新的承载。


eSRVCC:相比于SRVCC,媒体切换点改为更靠近本端的设备。具体方案就是增加ATCF/ATGW功能实体作为媒体锚定点,无论是切换前还是切换后的会话消息都要经过ATCF(Access Transfer Control Function)/ATGW(AccessTransfer Gateway)转发。后续在发生eSRVCC切换时,只需要创建UE与ATGW之间的承载通道,对端设备与ATGW之间的媒体流还是通过原承载通道传输。这样其创建新承载通道的消息交互路径明显短于SRVCC方案,减少了切换时长。

SRVCC基本架构

在LTE覆盖范围内通过IMS提供VoIP语音,IMS提供呼叫控制及后续的切换控制。

在用户通话过程中移出LTE覆盖范围时,IMS作为控制点与CS域交互,将原有通话切换到CS域,保证语音业务连续性。

SRVCC关键技术点:

1. 在MSC Server和MME之间定义Sv接口,提供异构网络间接入层切换控制;
2. 通过设臵IWF互通网元,终结Sv接口,避免对原有电路域设备的改造;
3. IMS网络作为会话锚定点,统一进行会话层切换,保证会话跨网切换的连续性。

SRVCC流程及切换性能

1. 发起VoLTE呼叫:SRVCC终端发起向另一IMS终端的语音呼叫;

2. 呼叫建立:呼叫成功,媒体连接建立,双方进行通话;
3. 发起SRVCC切换:用户离开LTE覆盖,发生SRVCC切换,EPC网络通知SRVCC MSC准备切换,MSC完成电路域资源预留;
4. 终端切换:MSC通过LTE网络通知终端切换到2G/TD;
5. 远端媒体更新:SRVCC MSC发起远端媒体更新,通知远端IMS终端通过SRVCC MSC接收和发送语音;
6. 媒体切换:进端IMS终端将媒体连接切换至SRVCC MSC;
7. 呼叫接续:从SRVCC终端切换到2G/TD到进端IMS终端切换媒体完成。

eSRVCC切换

 

eSRVCC基本原理

通过拜访地增加锚定节点,缩短媒体更新路径,eSRVCC实现了不超300ms的切换性能要求。

●信令面在用户所在本地网络锚定,媒体面切换也在本地进行,不需要通知远端切换媒体面,通常不超过100ms,避免了可能的语音中断(约800ms),空口切换带来的语音中断无法避免(约200ms)。

ATCF功能

●ATCF决定是否需要对媒体面会话进行锚定
●执行会话切换,并控制媒体面的切换
●切换时根据ATU-STI通知SCC AS发生了SRVCC切换
●分配可路由标识STN-SR

ATGW功能

●在ATCF的控制下对媒体面进行锚定和释放


MME功能
●从HSS获取STN-SR,切换时通过Sv接口转发给eMSC
●将UE的SRVCC capability发送给HSS,用于后续锚定判断
●发起目标小区的SRVCC切换
●协调PS切换和SRVCC切换同步执行

eMSC功能
●由MME Sv接口的消息触发预留CS域资源
●ATCF发起会话切换
●选择发现ATCF

SCC AS功能
●锚定和关联会话
●确定是否使用eSRVCC
●提供C-MSISDN和ATU-STI等信息,用于路由和绑定会话

eSRVCC的几个关键点

网络如何获取UE的SRVCC能力?
●SRVCC能力的UE附着时,NAS信令中的MS network capability携带该能力至MME,但此时IMS仍不知道UE的能力。

●当UE进行IMS注册时,由亍SCC AS需通过ISD流程将STN-SR推送到MME上,复用该流程的应答消息将SRVCC能力送到HSS和SCC AS上,该流程对后续的域选择等方案至关重要。

负责锚定功能的几个网元相互之间如何发现和关联两个域的呼叫?

●eMSC和SCC AS通过STN-SR发现拜访地的ATCF
●ATCF收到ATU-STI决定锚定媒体,并在切换时通知归属地的SCC AS
●ATCF根据C-MSISDN关联切换后的电路域呼叫和原IMS用户的呼叫

 

▊eSRVCC切换前后的信令流程


1.支持eSRVCC的UE注册流程

支持eSRVCC的UE在IMS网络的基本注册流程与普通LTE终端在IMS网络的基本注册流程类似,差异在于P-CSCF与I-CSCF之间会增加一跳ATCF,后续所有流经P-CSCF的消息都会经过ATCF转发。

关键处理步骤:


P1:P-CSCF/ATCF收到UE的REGISTER消息后,判断此呼叫后续有可能发生eSRVCC切换,则分配一个STN-SR号码,在REGISTER消息中增加Feature-Caps头域,并将其转发给I-CSCF。Feature-Caps头域的关键参数如下:

●+g.3gpp.atcf:STN-SR号码,用于eSRVCC IWF后续寻址ATCF。

●+g.3gpp.atcf-mgmt:ATCF的PSI号码,用于SCC AS后续寻址ATCF。

●+g.3gpp.atcf-path:ATCF URI号码,用于接受后续SCC AS发送的SIP MESSAGE请求(其中携带eSRVCC相关信息)

P2:UE收到401响应后,重新构造REGISTER消息,携带RAND和RES,发送给S-CSCF。P-CSCF/ATCF对其的处理与P1步骤相同。

UE在IMS网络完成基本注册后,S-CSCF根据HSS上用户签约的iFC模板数据,向SCC AS发起第三方注册。对于分离的IMS-HSS与EPS-SS方案,消息流程如下所示:

P1-P5:SCC AS根据消息中Feature-Caps头域的+g.3gpp.atcf-mgmt标识,判断UE需要使用eSRVCC流程,则发送UDR消息到EPS-SS,请求下载用户的eSRVCC能力、STN-SR号码和C-MSISDN号码。


P6:EPS-SS通过UDA响应将用户的eSRVCC信息返回给SCC AS。

P7-P10:SCC AS通知ATCF将eSRVCC相关信息(ATU-STI、C-MSISDN)与UE的本次注册信息进行绑定。

P11:SCC AS向EPS-SS发送PUR消息通知更新STN-SR号码。

P12:EPS-SS返回成功接收响应PUA。

P13:EPS-SS判断消息中携带的STN-SR号码等与本地保存的STN-SR号码等信息不一致,则将消息中携带的STN-SR号码等发送给MME。

P14:MME更新本地的STN-SR等号码后,向EPS-SS返回成功更新响应。

2.支持eSRVCC的UE主叫流程

同IMS基本呼叫相比,只描述关键部分:


P1:UE_A发起会话,向IMS拜访网络入口P-CSCF发送INVITE消息。

P2:P-CSCF/ATCF收到INVITE消息后,判断需要锚定此会话,则进行本端媒体资源预留,并将INVITE消息发送到S-CSCF。如果该会话的注册信息已绑定了eSRVCC相关信息,则P-CSCF/ATCF也将该会话与eSRVCC相关信息相绑定。

P3~P4:S-CSCF收到INVITE消息后,根据主叫用户签约的iFC模板数据,触发SCC AS。 P5~P6:S-CSCF将呼叫接续到被叫侧。

P7:S-CSCF收到被叫侧的183响应后,将其转发给SCC AS。

P8:SCC AS收到183响应后,做如下处理:
1) 判断主叫用户是否已在IMS-HSS签约了STN-SR号码和C-MSISDN号码。如是,则在183响应中增加Feature-Caps头域,表明该会话被SCC AS锚定。
2) 将183响应发送给S-CSCF。

P9:P-CSCF/ATCF收到S-CSCF转发的183响应,发现其中携带+g.3gpp.srvcc标识,则记录该标识与该会话的关联。

P10:UE_A收到183响应,发现其中携带Feature-Caps头域和+g.3gpp.srvcc标识,则记录该会话支持eSRVCC切换。

P11~P12:S-CSCF收到被叫侧针对INVITE请求的200 OK后,将其转发给SCC AS。

P13:SCC AS收到200 OK后将200 OK发送给S-CSCF。 P14~P15:UE_A收到200 OK。

3.UE的VoLTE被叫流程

P1:被叫侧I-CSCF收到初始会话请求。


P2:I-CSCF将INVITE消息转发到被叫用户注册的S-CSCF。

P3:S-CSCF收到INVITE消息后,根据被叫用户签约的iFC模板数据,触发SCC AS。

P4:SCC AS收到INVITE消息后,做如下处理:
1) 判断被叫用户是否已分配STN-SR号码和C-MSISDN号码。如是,则在INVITE消息中增加Feature-Caps头域,表明该会话被SCC AS锚定。
2) 将INVITE消息发送给S-CSCF。其中,关键参数如下:

●Feature-Caps头域:携带+g.3gpp.srvcc标识,表示该会话被SCC AS锚定。

P5:S-CSCF将INVITE消息发送到P-CSCF/ATCF。

P6:P-CSCF/ATCF收到INVITE消息后,判断需要锚定此会话,则进行本端媒体资源预留,并将INVITE消息发送给UE_B。

P7:UE_B收到INVITE消息,发现其中携带Feature-Caps头域和+g.3gpp.srvcc标识,则记录该会话支持eSRVCC切换,并返回183响应。

P8~P9:P-CSCF/ATCF将183响应通过S-CSCF发送到SCC AS。 P10~P11:SCC AS收到183响应,并将其返回给主叫侧。 P12~P16:UE_B向主叫侧返回200 OK。

4. UE的eSRVCC切换流程

eSRVCC过程可以分为以下过程:

1.切换判断:eNodeB根据UE上传的测量报告(包括E-UTRAN网络下的小区信号测量报告以及邻近的UTRAN/GERAN网络的信号测量报告),判断是否进行接入网切换。

2.切换过程:

a)eNodeB判断需要切换接入网后,向源MME发送handover required消息。MME根据消息里的eSRVCC指示,将QCI=1的语音承载和其他承载分离,同时根据切换请求消息中的Target ID选择一个eSRVCC IWF,通过Sv接口向其发起PS to CS Request切换请求。该消息中携带了之前ATCF为UE分配的STN-SR号码。

b)eSRVCC IWF收到切换请求消息后,根据消息中携带的Target ID,找到目标MSC Server(即切换目标侧所属MSC Server),然后在eSRVCC IWF和目标MSC Server间执行切换流程。目标侧UTRAN/GERAN网络的承载建立完成后,eSRVCC IWF根据STN-SR号码,建立eSRVCC IWF和ATCF/ATGW的承载。

c)ATCF根据C-MSISDN关联用户待切换的会话,更新ATGW上的承载信息,将本端媒体面切换为UTRAN/GERAN网络的承载,并通知SCC AS更新UE的接入域信息。

eSRVCC方案相对于SRVCC方案的优化在于减少了切换时长,确保切换时长小于300ms。由于SRVCC方案中,影响切换时长的主要因素是在IMS网络中创建新承载的过程,因此,eSRVCC相比于SRVCC优化的核心放在新承载创建路径上,如下图所示。

 

SRVCC方案:媒体的切换点是对端网络设备(如对端UE),本端接入网络发生变更后,需要将变更后的本端承载设备地址等信息发送给对端网络设备,进行承载地址的更新。


eSRVCC方案:媒体切换点改为更靠近本端的设备,以减少变更消息传输时长。具体方案就是在P-CSCF与I-CSCF/S-CSCF之间增加ATCF/ATGW功能实体(在华为提供的eSRVCC切换解决方案中,由SBC实现ATCF/ATGW功能),作为媒体锚定点,无论是切换前还是切换后的会话消息都要经过ATCF/ATGW转发。后续在发生eSRVCC切换时,只需要创建UE与ATGW之间的承载通道,对端设备与ATGW之间的媒体流还是通过原承载通道传输。

eSRVCC方案中创建新承载通道的消息交互路径明显短于SRVCC方案,因此eSRVCC方案相比SRVCC方案减少了切换时长。以下描述通话后的切换流程。

P1:UE_A和UE_B正在进行一个Active状态的会话,媒体锚定在ATCF/SBC。UE_A根据当前所在地区E-UTRAN网络和UTRAN/GERAN网络的信号强度,向eNodeB上传系统测量报告。eNodeB经过判断决定切换后,向MME发送切换请求Handover Request消息;


P2:MME向UE_A当前所在地区的eSRVCC IWF发起eSRVCC切换请求PS to CS Request消息。

P3~P4:eSRVCC IWF向MME返回PS to CS Response消息。MME收到消息后,指示UE_A向UTRAN/GERAN网络发起切换。

P5:eSRVCC IWF首先向接入网络申请承载资源,申请过程与普通CS域用户发起呼叫时申请资源的过程相同。申请资源后,再根据STN-SR向ATCF/SBC发送INVITE消息,携带SDP信息。其中,关键参数如下:
●Request URI:STN-SR号码。
●P-Asserted-Identity头域:C-MSISDN号码。

P6:ATCF/SBC收到INVITE消息,根据其中STN-SR号码,判断该消息是由eSRVCC切换产生。ATCF/SBC作如下处理:

1)ATCF/SBC从INVITE消息中获取C-MSISDN,结合本地保存的+g.3gpp.srvcc标识、eSRVCC相关信息(ATU-STI等),确定UE_A需要切换的Active状态会话。

2)ATCF/SBC判断eSRVCC IWF发送的编解码列表是否包含原会话协商后使用的编解码。如果包含,则eSRVCC IWF支持会话正在使用的编解码,ATCF/SBC直接返回原会话协商后的编解码。

如果不包含,则eSRVCC IWF不支持会话正在使用的编解码,则ATCF/SBC按照SRVCC流程处理,将SRVCC IWF的切换请求转发给SCC AS,由SCC AS执行切换功能。

3)ATCF/SBC进行媒体协商修改,新建媒体端点,与eSRVCC IWF侧端点完成连接。

4)ATCF/SBC向eSRVCC IWF返回200 OK消息,携带本端新建端点的SDP信息。

P7:eSRVCC IWF返回消息接收成功响应ACK。

P8~P9:eSRVCC IWF向MME返回PS to CS Complete Notification消息,表示UE_A已成功接入UTRAN/GERAN网络。

至此,UE_A与ATCF/SBC之间的承载资源信息分为CS网络承载和PS网络承载两部分。

P10:ATCF/SBC根据待切换会话关联的ATU-STI,向SCC AS发送INVITE消息,请求eSRVCC切换。其中,关键参数如下:
●Request-URI:待切换会话的ATU-STI。 ? P-Asserted-Identity:UE的C-MSISDN号码。
●Require:携带tdialog标识,指示支持Target-Dialog头域。
●Target-Dialog:待切换会话的原Dialog ID,包括原会话的Call-ID,远端设备用户实例(remote-tag),本端设备用户实例(local-tag)。 ●SDP:UE的SDP,与原会话协商后的SDP相同。

P11:I-CSCF根据Request-URI查询HSS或根据本地PSI数据配置,判断被叫用户是一个PSI用户,根据查询结果将消息路由到SCC AS。Inivite消息中Route头域包含SCC AS地址,携带orig和atu-sti参数。
●orig:指示SCC AS进行主叫侧处理。
●atu-sti:指示SCC AS,该消息是一个eSRVCC的切换请求。

P12:SCC AS收到INVITE消息后,通过其中Target-Dialog头域的原会话Call-ID确定待切换的会话,并作如下处理:
●如果该会话处于Active状态,且具有激活的语音媒体成分,则SCC AS比较INVITE消息中的SDP是否与原会话协商后的SDP相同,并根据比较结果启动eSRVCC流程或SRVCC流程。
●如果相同,则SCC AS启动eSRVCC流程,修改该会话的接入域,表明用户已从CS域接入,便于后续业务进行域选择,并且返回200 OK消息。由于原会话协商的SDP未改变,SCC AS不更新远端SDP。
●如果不相同,则SCC AS启动SRVCC流程,修改会话接入域,返回200 OK消息,并且更新远端SDP。

P13:I-CSCF将SCC AS发送的200 OK响应转发至ATCF/SBC。

P14:ATCF/SBC向SCC AS返回ACK消息。UE_A与UE_B之间恢复媒体连接。后续UE_A所在网络侧媒体信息基于CS网络承载。

P15~P16:SCC AS向UE_A发起BYE请求,释放原接入网络承载资源。

P17~P18:UE返回200 OK,SBC、SCC AS释放原会话占用的承载资源。

▊VoLTE的端到端要求

终端:

业务配置管理功能
●支持Ut接口,支持对补充业务数据迚行配置
●支持DM

应用层功能要求
●SIP协议栈:遵循3GPP SIP profile
●IMS终端基本功能(IMS注册,IMS呼叫)
●IMS会话切换
●Mid-call特性
●支持基于SIP的即时消息
●支持基于RCS的融合消息功能
●编码要求:支持AMR,AMR-WB,H.264编解码类型
●支持应用层QoS参数到承载的映射
●基于PGW的IMS入口点发现机制

NAS层承载功能要求
●支持多PDN连接,其中IMS与用APN(用户丌可见)单独建立PDN连接
●支持SRVCC能力上报、获知LTE无线是否支持VoLTE

L2/L3功能要求
●语音承载基本功能:QCI=1的QoS保证、RLC层
●语音承载无线优化功能:IP头压缩功能
●异系统测量及控制、SRVCC切换

物理层功能要求
●物理层无线优化功能:半持续调度SPS,TTI Bundling

RRM功能要求
●语音承载算法优化功能:
针对语音业务的RRM算法优化

组网:

●IMS与EPC间通过SGi接口连接,IMS信令和媒体都通过该接口承载

●建议VoLTE采用专用IMS APN,主要有三个优点:

-可保证LTE手机国际漫游时APN方案统一;
-可区分数据,区别计费;
-承载方案简单
●用户数据(HLR、SAE HSS和IMS HSS)融合

端到端QoS

无线侧针对语音和视频数据包特点优化和增强

接入侧通过PCC保证QoS
网络侧采用IP与网承载保证QoS

▊用户数据

LTE引入了EPS-HSS,其接口协议、签约数据、信令流程、鉴权加密等方面与HLR有很大差别,HLR需升级满足;

IMS引入了IMS HSS,其接口协议与LTE相同,均采用Diameter,但用户数据与LTE和2/3G有较大差别(IMPI、IMPU等),且已在现网部署;

VoLTE用户数据库需同时具备HLR和HSS功能,需深度考虑三合一融合设备。

融合设备仍需新增的部分功能:


1、支持域选择相关功能,包括电路域侧域选择功能,以及支持IMS域的SCC AS通过Sh接口查询用户注册状态等信息以实现IMS侧域选择;

2、支持eSRVCC中相关参数(SRVCC能力、STN-SR、C-MSISDN、T-ADS等信息)的存储、查询,以及在S6a和Sh接口的传递。

▊域选择

LTE双待机、CSFB手机都只有电路域话音,不存在“被叫接续网络域选择”问题。

VoLTE手机既可以在电路域使用语音业务,也可在IMS域(LTE承载)使用语音业务,因此存在“被叫接续网络域选择”的问题,即网络如何识别用户当前的驻留网络,接续到该用户。

接续方案:CS域主叫,由CS域执行被叫接续网络域选择;IMS域主叫,由IMS域执行被叫接续网络域选择

改造点:语音AS和融合HLR/HSS支持域选择功能

方案优势:有效避免跨域路由迂回,减少呼叫时延,保障话音质量

 

 

▊无线侧要求


VoLTE承载能力

VoLTE语音业务的覆盖要求
23.85kbps的高清语音数据包至少需要上行256kbps的覆盖指标(不考虑容量限制)。
 

无线优化功能可提升VoLTE语音业务质量

 

●减少信令开销
-头压缩:采用ROHC后,头开销降为4~6byte(12.5%~18.8%),IP头压缩可以大大降低
VoIP数据包的头开销,从而提高系统承载的用户数;

-半持续性调度:对于到达间隔是20ms的VoIP新传包,可以由一条下行控制信令分配频域资源,以后每隔20ms就“自动”用分配的频域资源传输新来的包,对于重传包,采用动态调度,即为“半”持续性调度;

●增强覆盖
TTI bundling:当小区边缘UE 功率受限时,由于资源受限,路损较大等原因,导致丢包率增加。使用TTI bundling,四个连续子帧中的立刻重传,能积累能量,增大传输成功率,从而提高接收成功率, 避免过多的HARQ重传。

●终端省电
连接态DRX:允许UE不再一直监视PDCCH,在语音包到达时才唤醒,从而达到省电的目的

支持eSRVCC切换流程

eSRVCC切换将涉及IMS与现网电路域以及LTE核心网间的互操作,需要相关网元升级支持相应流程。同时,eSRVCC对无线侧也有额外功能需求,方案实施需要无线网升级改造。

1.VoLTE呼叫建立:SRVCC终端发起VoLTE语音呼叫,媒体连接建立,双方进行通话;

2.eSRVCC测量控制:随着用户逐渐移出LTE覆盖,当服务小区信号低于某一门限时,可能下发针对eSRVCC切换的基于B1或B2事件的异系统邻区测控;

3.发起eSRVCC切换:LTE无线侧根据终端测量上报,选定eSRVCC切换目标小区,向EPC发起切换请求;

4.核心网及终端切换:EPC网络通知切换目标小区所属MSC预留电路域资源,MSC完成资源预留后,通过LTE网络下发切换命令,控制终端切换至目标2/3G小区继续通话;

5. 远端媒体更新:SRVCC MSC发起远端媒体更新,通知远端IMS终端通过SRVCC MSC接收和发送语音,远端IMS终端将媒体连接切换至SRVCC MSC。

▊涉及改造的网元和内容

eNodeB
全网软件升级,可正确识别终端eSRVCC能力,并仅对具备eSRVCC能力的终端,下发针对eSRVCC的异系统测量控制,并可根据终端测量上报选定eSRVCC切换目标小匙并触发切换。

BSC/RNC
可正确识别LTE为切换源网络的语音切换,以支持相相关指标统计(如eSRVCC切换成功次数)。

▊业务一致性

CM-IMS与CS的业务分析

 

实现机制差别
●CS域的补充业务功能多数由交换机或SCP实现,用户的业务数据保存在HLR中;
●CM-IMS域的补充业务功能由AS实现,用户的透明业务数据保存在AS中,可选择保存在HSS中。

补充业务功能差别
●CS无法实现IMS域号码显示限制逾越和增强型呼叫前转(按时间、主叫用户设置呼叫前转信息)

智能网业务差别
●手机智能网业务在未割接至IMS时,业务体验或不一致
●若签过VPMN手机换成VoLTE机,则VPMN可能需全网割接实现一致性

▊VoLTE网络改造要求(与CSFB对比)

●VoLTE和CSFB对LTE网络均需增加新的功能要求
●与CSFB相比,VoLTE/增加了IMS功能要求,降低了对2G/3G网络的改造要求
●VoLTE与CSFB功能改造点丌能复用,但邻区关系等参数配置可复用