Packet Data Protocol (PDP)
A Packet Data Protocol (PDP) context offers a packet data connection over which the UE and the network can exchange IP packets. Usage of these packet data connections is restricted to specific services. These services can be accessed via so-called access points.
一个PDP上下文提供了在UE和网络侧之间交换IP包的一个数据包连接。利用这个数据包连接可以访问一些特定的业务。这些业务可以通过所谓的接入点来访问。
[attach]305[/attach]
图1:多PDP上下文
In IMS based systems it is expected that several embedded applications will run on the MT, requiring multiple PDP contexts. For the TE (e.g. connected PC) one additional PDP context may be also active.
Multiple PDP contexts have two sub-categories:
1 multiple primary PDP contexts: they provide connections to different PDNs
2 secondary PDP contexts: they provide connections to the same PDN but with different QoS
在基于IMS的系统中,它期望能在终端上运行多个嵌入的应用,因此需要有多个PDP上下文。对于TE(例如连接的电脑),则需要有一个额外的PDP上下文也要激活。多PDP上下文有如下两个子分类:
1 多Primary PDP上下文:他们连接到不同的PDN;
2 Secondary PDP上下文; 他们提供了到相同PDN的连接,但是具有不同的QOS
Multiple Primary PDP Contexts
Multiple primary PDP contexts are two or more PDP contexts independent from one another, each of them using one unique PDP address. They give the possibility to have simultaneous connections to different PDNs – e.g. to the internet for one application, while to a private network for another one.
Beside the unique PDP address, each PDP context has its own QoS and NSAPI (Network Layer Service Access Point Identifier, see later) assigned. Each PDP context has a separate RAB (Radio Access Bearer) and GTP tunnel to transfer user plane data.
The PDP contexts typically terminate in different access points on the network side (although it is allowed that they terminate in the same access point). The terminating access points can be located in the same or in different GGSNs.
The example in Figure below shows the user plane path for three primary PDP contexts providing connections to three different PDNs:
多Primary PDP上下文是在终端中存在两个或更多独立的PDP上下文,每一个上下文都有唯一的IP地址。他们提供了同时访问不同PDN网络的能力--例如一个应用是连接到Internet,另一个应用则连接到一个私有网络。
除了唯一的PDP地址,每个PDP上下文还会分配到自己的QOS和NSAPI。每个PDP上下文还有一个分离的RAB和GTP用户平面的隧道。
PDP上下文通常在网络侧的不同接入点终结(尽管军需他们在相同的接入点终结)。终结的接入点可以存在于相同或不同的GGSN。
下面的图例说明了有3个Primary PDP上下文的用户平面路径存在,并提供了到3个不同PDN的连接:
[attach]306[/attach]
图2:多Primary PDP上下文
Primary PDP contexts can be activated or deactivated independently from one another. QoS of any of the active PDP contexts can be modified with the PDP context modification procedure initiated by the MS or by the network. (See Below for details)
Primary PDP上下文可以互不受影响的单独激活。任何激活的PDP上下文的QOS可以通过由MS或网络侧发起的PDP上下文修改流程来发起。
Secondary PDP Contexts
A secondary PDP context is always associated with a primary PDP context. PDP address (IP address) and access point (AP) is re-used from the primary context. Hence the primary and the associated secondary PDP context provide connection to the same PDN with different guaranteed QoS.
One primary PDP context might have multiple secondary contexts assigned. Each PDP context (i.e. the primary and all secondary) has its own RAB and GTP tunnel to transfer user plane data. Also, each context is identified by a unique NSAPI (Network Layer Service Access Point Identifier).
The primary PDP context has to be active prior to activating an associated secondary PDP context. Any secondary PDP context can be deactivated while keeping the associated primary context (and eventual other secondary PDP contexts) active. If a primary PDP context is deactivated, this will also deactivate all the assigned secondary PDP contexts. QoS of any active primary or secondary PDP context can be modified with the PDP context modification procedure initiated by the MS or by the network. (See below for details)
As the PDP address (IP address) is common for the primary and for (all) the associated secondary PDP contexts, the TFT (Traffic Flow Template) is introduced to route downlink user plane data into the correct GTP tunnel and hence into the correct RAB for each context.
The example in Figure below shows the user plane for a primary and two associated secondary PDP contexts:
一个Secondary PDP上下文总是和一个Primary PDP上下文关联的。PDP地址和接入点AP都是和Primary上下文一样的。因此Primary和关联的Secondary PDP上下文一起提供了到相同PDN的连接,但区别是具有不同的承诺QOS。
一个Primary PDP上下文可能有多个分配的Secondary上下文。每个PDP上下文(也就是Primary和所有的Secondary)都有他们自己的RAB和GTP隧道来传输用户平面数据。并且,每个上下文都由唯一的NSAPI来识别。
Primary PDP上下文必要要在关联的Secondary上下文激活之前激活。任何的Secondary PDP上下文可以在保持的Primary上下文处于active的状态下进行激活。如果一个Primary PDP上下文去激活了,那也将去激活所有分配关联的Secondary PDP上下文。任何active的primary或secondary PDP上下文的QOS都可以由MS或网络侧发起的PDP context modification流程来修改。
由于PDP地址(IP地址)对Primary和所有关联的secondary PDP上下文来说都是公共的,因此要引入TFT(Traffic Flow Template)来讲下行的用户平面数据路由到正确的GTP隧道以及每个上下文正确的RAB。
下面图例中的例子描述了一个Primary和两个关联的Secondary PDP上下文用户平面:
[attach]307[/attach]
图3:Secondary PDP上下文
Combination of multiple primary PDP contexts and secondary PDP contexts is also possible. For example, two primaries with one secondary context for each will result in four active PDP contexts in total. The maximum number of supported PDP contexts is terminal dependent.
将多个Primary PDP上下文和Secondary PDP上下文捆绑是有可能的。例如,两个各自带有secondary上下文的primary上下文就总共有4个active的上下文。支持的最大数量的PDP上下文和终端的实现有关。(最大11个,取决于NSAPI)
Traffic Flow Template (TFT)
The Traffic Flow Template (TFT) is used by GGSN to discriminate between different user payloads. The TFT incorporates from one to eight packet filters; a unique packet filter identifier identifies each filter. Filtering can be based on one or more of the following filter attributes:
- Source address (with subnet mask)
- IPv4 protocol number
- Destination port range
- Source port range
- IPSec Security Parameter Index (SPI)
- Type of Service (TOS) (IPv4)
The TFT is provided by the MS in the Activate Secondary PDP Context Request message, it is stored by the GGSN, and is examined when routing downlink user plane data. The TFT can be modified or deleted with the MS initiated PDP context modification procedure. A TFT may be also assigned to a primary PDP context by means of the MS initiated PDP context modification procedure.
A TFT is built up from Packet Filters (minimum 1, maximum 8 of them) to provide flexibility in filtering. The relationship between PDP contexts, TFTs and Packet Filters is illustrated in Figure below:
TFT是GGSN上用于区分不同的用户payload的关键。TFT可以由1到8个包过滤器组成;一个唯一的包过滤ID标识了每个过滤器。过滤可以根据以下一个或多个过滤属性:
- 源地址(和掩码)
- IPV4协议号
- 目标端口范围
- 源端口范围
- IPSec SPI(安全参数索引)
- TOS(IPV4包头中的)
TFT由MS在Activate Secondary PDP Context Request消息中提供,并且存储在GGSN中,并且在路由下行用户平面数据包的时候检查。TFT可以由MS发起的PDP Context modification流程修改。
TFT是由包过滤器组成(最少1,最多8个)来提供过滤的灵活性。PDP上下文、TFTs、包过滤器之间的关系由下图所示:
[attach]308[/attach]
图4:TFT
PDP context procedures
Primary PDP context activation
This procedure is used to establish a logical connection with the Quality of Service (QoS) functionality through the network from the UE to the GGSN. PDP context activation is initiated by the UE and changes the session management state to active, creates the PDP context, receives the IP address and reserves radio resources. After a PDP context activation the UE is able to send IP packets over the air interface. The UE can have up to 11 PDP contexts active concurrently.
Secondary PDP context activation
A secondary PDP context activation allows the subscriber to establish a second PDP context with the same IP address as the primary PDP context. The two contexts may have different QoS profiles, which makes the feature useful for applications that have different QoS requirements (e.g., IP multimedia). The access point name, though, will be the same for the primary and secondary PDP contexts.
PDP context modification
The UE, the SGSN or the GGSN initiate this procedure for updating the corresponding PDP context. Additionally, the radio access network is able to request a PDP context modification from the SGSN (e.g., when coverage to the UE has been lost). The procedures modify parameters that were negotiated during an activation procedure for one or several PDP contexts.
PDP context deactivation
This procedure is used to delete a particular logical connection between the UE and the GGSN. The initiative to deactivate a PDP context can come from the UE, the SGSN, the Home Location Register (HLR) or the GGSN.
Primary PDP context激活
这个流程用来建立UE到GGSN贯穿网络侧的带有QOS功能的逻辑连接。PDP上下文激活由UE发起,并且将会话管理状态切换到active,创建PDP上下文,接收IP地址和预留的空口资源。在一个PDP上下文激活后,UE可以通过空中接口发送IP包。UE最多同时有11个PDP上下文。
Secondary PDP context激活
secondary PDP上下文用来允许签约用户能够建立第二个并且和primary PDP上下文具有相同地址的上下文。这两个上下文可以有不同的QOS profile,这样来满足不同引用的需要(例如IP多媒体)。接入点的名字也和关联的Primary PDP上下文是一样的。
PDP context修改
UE、SGSN或GGSN都可以发起这个流程来更新相应的PDP上下文。另外,无线接入网络也能请求到SGSN的PDP上下文修改流程(例如到UE的无线覆盖丢失)。流程涉及的修改的参数将在一个或多个PDP上下文的激活时进行协商。
PDP context去激活
这个流程用来删除UE和GGSN之间的特定的逻辑连接。UE、SGSN、HLR、GGSN都可以发起这个流程。
[attach]309[/attach]
图5:PDP上下文的激活
Access points
Access points can be understood as IP routers that provide the connection between the UE and the selected service. Examples of such services are:
- Multimedia Messaging Service (MMS);
- Wireless Application Protocol (WAP);
- direct Internet access;
- IP Multimedia Subsystem (IMS).
Depending on the operator of the network, more than one of these services might be provided by the same access point. The UE needs to be aware of an Access Point Name (APN) – the address of a GGSN – which gives access to the service-providing entity (e.g., an MMSC, the Internet or the P-CSCF). One GGSN may provide different services that can be accessed by different APNs.
When establishing a primary PDP context with an APN the UE receives an IP address or – in the case of IPv6 – an IPv6 prefix that it has to use when communicating over that PDP context. This means that when a UE has established several connections to different APNs the UE will have different IP addresses for each of the provided services.
REFERENCES
[1] The IMS: IP Multimedia Concepts and Services, Second Edition Miikka Poikselk?, Georg Mayer, Hisham Khartabil and Aki Niemi
[2] Multiple PDP Contexts in UMTS - ESG Group, Qualcomm
[3] 3GPP TS 23.060: "General Packet Radio Service (GPRS); Service description"
[4] 3GPP TS 24.008: "Mobile radio interface layer 3 specification; Core Network Protocols"
[5] What are Secondary PDP Contexts Good For? - Martins Mobile Technology Blog
[6] Using Traffic Flow Templates (TFTs) on BGAN - Inmarsat
[attach]404[/attach]
图例:TFT在下行方向映射到PDP上下文的示意图
上面的这段英文,直白一点就是说。TFT肯定是和二次激活有关。并且包含了一个packet filter可以来区分MS的不同上层应用,例如在“Secondary PDP Context激活流程及实例”这篇帖子当中,就给出了抓到的包,看到了二次激活请求(#5号包)中用的TFT,包括应用服务器的IP和应用端口号554,代表是一个流媒体业务。
为什么不能用TEID和NSAPI来区分,一定要用TFT呢?因为前者只能在Gn接口来区分出MS的Primary PDP Context和Secondary PDP Context,但在Gi接口中不行。我们的下行数据肯定是从Gi口先收到。这个Gi口收到的下行数据是一个纯IP包,没有GTP头部的。所以GGSN怎么能和PDP上下文映射呢?就需要用到TFT了。因为这个下行数据中有端口号和IP地址等信息。和PDP Context映射以后,到了Gn接口,再由TEID和NSAPI来区分。
哦,那么是不是只要pdn只要符合一个TFT的pf就可以走这个隧道?比如说,一个手机同时访问百度和新浪(应该是走同一个隧道吧)那么由于源地址不同,因此会从不同的pf过滤进这个隧道了?为什么不直接通过ftf判断就行了,还要通过pf过滤?
本文摘自: GPRS家园(www.gprshome.com) 详细出处请参考:http://www.gprshome.com/forum.php?mod=viewthread&tid=266&page=1&extra=#pid936
3 "第二个secondaryPDP就可以不带TFT,让linked PDP2,但必须有Qos。(pdp3)此时,下行的分组如何被ggsn选择PDP???????"
本文摘自: GPRS家园(www.gprshome.com) 详细出处请参考:http://www.gprshome.com/forum.ph ... &page=1#pid4249
Secondary PDP Contexts
A secondary PDP context is always associated with a primary PDP context. PDP address (IP address) and access point (AP) is re-used from the primary context. Hence the primary and the associated secondary PDP context provide connection to the same PDN with different guaranteed QoS.
One primary PDP context might have multiple secondary contexts assigned. Each PDP context (i.e. the primary and all secondary) has its own RAB and GTP tunnel to transfer user plane data. Also, each context is identified by a unique NSAPI (Network Layer Service Access Point Identifier).
The primary PDP context has to be active prior to activating an associated secondary PDP context. Any secondary PDP context can be deactivated while keeping the associated primary context (and eventual other secondary PDP contexts) active. If a primary PDP context is deactivated, this will also deactivate all the assigned secondary PDP contexts. QoS of any active primary or secondary PDP context can be modified with the PDP context modification procedure initiated by the MS or by the network. (See below for details)
samsin 发表于 2011-10-7 18:57
首先,谢谢楼主:
我的意思是:actviate pdp3 procedure的时候,不带TFT, 让linkedTI指向pdp2的TI,这样的 ...
w18886hphz 发表于 2011-10-16 04:14
primary pdp绝对不含TFT?对这个观点有疑问。
图4中primary pdp写着"This example no TFT assigned",说这个 ...
Table 9.5.1/3GPP TS 24.008: Activate PDP context request message content
IEI | Information Element | Type/Reference | Presence | Format | Length | |||||||
Protocol discriminator | Protocol discriminator 10.2 | M | V | 1/2 | ||||||||
Transaction identifier | Transaction identifier 10.3.2 | M | V | 1/2– 3/2 | ||||||||
Activate PDP context request message identity | Message type 10.4 | M | V | 1 | ||||||||
Requested NSAPI | Network service access point identifier 10.5.6.2 | M | V | 1 | ||||||||
Requested LLC SAPI | LLC service access point identifier 10.5.6.9 | M | V | 1 | ||||||||
Requested QoS | Quality of service 10.5.6.5 | M | LV | 13-17 | ||||||||
Requested PDP address | Packet data protocol address 10.5.6.4 | M | LV | 3 - 23 | ||||||||
28 | Access point name | Access point name 10.5.6.1 | O | TLV | 3 - 102 | |||||||
27 | Protocol configuration options | Protocol configuration options 10.5.6.3 | O | TLV | 3 - 253 | |||||||
A- | Request type | Request type 10.5.6.17 | O | TV | 1 |
Table 9.5.4/3GPP TS 24.008: ACTIVATE SECONDARY PDP CONTEXT REQUEST message content
IEI | Information Element | Type/Reference | Presence | Format | Length | |||||||
Protocol discriminator | Protocol discriminator 10.2 | M | V | ½ | ||||||||
Transaction identifier | Transaction identifier 10.3.2 | M | V | ½– 3/2 | ||||||||
Activate secondary PDP context request message identity | Message type 10.4 | M | V | 1 | ||||||||
Requested NSAPI | Network service access point identifier 10.5.6.2 | M | V | 1 | ||||||||
Requested LLC SAPI | LLC service access point identifier 10.5.6.9 | M | V | 1 | ||||||||
Requested QoS | Quality of service 10.5.6.5 | M | LV | 13-17 | ||||||||
Linked TI | Linked TI 10.5.6.7 | M | LV | 2-3 | ||||||||
36 | TFT | Traffic Flow Template 10.5.6.12 | O | TLV | 3-257 | |||||||
27 | Protocol configuration options | Protocol configuration options 10.5.6.3 | O | TLV | 3-253 |
我的理解是这样。
这里提到的pdp1-pdp3,实际上pdp1是primary pdp context, pdp2和pdp3实际上都是secondary pdp context。在这里假设,pdp1是为了访问普通的网页浏览而建立的,pdp2是为了一个IMS的语音业务,pdp3则是为了一个mobile tv的应用。
在TS24008里关于Linked TI是这样说明的。"The purpose of the Linked TI information element is to specify the active PDP context from which the PDP address for the new PDP context could be derived by the network."即Linked TI关联的PDP context要有一个PDP地址。但上面的如果pdp3如果通过linked ti关联到pdp2,而pdp2是没有pdp地址的,因为它也要依附到pdp1才能获取到pdp地址。
另外,从逻辑上来说,也不应该出现这样的依附。如果如你所说,pdp3 link到pdp2,那pdp2对应的IMS语音业务结束了,pdp2会被去激活。那这时候是不是应该把link的pdp3也去激活呢?显然不应该。用户还要看mobile tv呢。
所以,我个人觉得,虽然在规范中没有找到出处,也就是。如果这个MS有多个active的pdp context(1 primary + n secondary),
本文摘自: GPRS家园(www.gprshome.com) 详细出处请参考:http://www.gprshome.com/forum.php?mod=viewthread&tid=266&page=1#pid4548
1 我想问一个和应用有关的问题:假如一个用户通过手机上网浏览网页,打开一个页面后,不再有下一个动作,那么MS,SGSN,GGSN这几个节点会一直保持PDP ACTIVATE状态不变么,如果会发生DEACTIVATE PDP的过程,一般是从哪里发起,完整过程一般是怎样的?谢谢!
GGSN上会有idle-timeout来检查PDP多长时间没有业务流量,从而发起去激活流程。流程和23.060里介绍的GGSN发起的PDP去激活流程一致。
2 还想问一下,24.008里面session management中,session这个词,有没有确切的含义,是否是指从PDP激活开始,到PDP去激活为止,PDP上下文在MS,SGSN,GGSN中生效这段时间相关的信令面和用户面数据传输事件的集合?
session应该就是指的建立了到某一个PDN网络的连接。可以这么理解,和PDP的激活肯定是相关联的。我个人比较赞同你的理解。
3、第二个secondaryPDP就可以不带TFT,让linked PDP2,但必须有Qos。(pdp3)
此时,下行的分组如何被ggsn选择PDP???????
samsin 发表于 2011-10-18 21:17
谢谢楼主,你的回答,我有两个疑问,
1、pdp2 的linked ti i是 primary pdp, pdp3的linked ti是pdp2, 那 ...
2、个人认为:primary pdp和诸secondary pdp只有创建的时候有区别,一旦建立过后,是独立被管理的啊。
Multiple Primary PDP Contexts
Multiple primary PDP contexts are two or more PDP contexts independent from one another, each of them using one unique PDP address. They give the possibility to have simultaneous connections to different PDNs – e.g. to the internet for one application, while to a private network for another one.
ithinc 发表于 2013-1-24 10:23
楼主,这段文字是从哪儿来的?有另一种说法是PDP Context并不区分Primary与Secondary,Primary/Secondary ...
Table 7.2.8-1:Information Elements in a Modify Bearer Response
Information elements | P | Condition / Comment | IE Type | Ins. |
Cause | M |
| Cause | 0 |
MSISDN | C | This IE shall be included on S5/S8 interfaces by the PGW if it is stored in its UE context and if this message is triggered due to TAU/RAU/HO with SGW relocation. | MSISDN | 0 |
Linked EPS Bearer ID | C | This IE shall be sent on S5/S8 when the UE moves from a Gn/Gp SGSN to the S4 SGSN or MME to identify the default bearer the PGW selects for the PDN Connection. This IE shall also be sent by SGW on S11, S4 during Gn/Gp SGSN to S4-SGSN/MME HO procedures to identify the default bearer the PGW selects for the PDN Connection. | EBI | 0 |
wenliu 发表于 2013-1-24 14:16
翻了一下29060 和 23401 ,这个default Beaer ID 认定分情况。不过感觉的确 GPRS这边 Primay 和2nd 这两者是 ...
对于GTPV1 和GTPV2 , SGSN -> MME Forward Relocation Req消息来讲:
使用S3 Interface的时候, Forward Relocation Request 消息中已经标出 Link EPS Bearer ID的 header ,所以随后Modify Bearer Resp中这个header是可以不带的。(但是GPRS 使用SGSN-SGW-PGW 的时候,不晓得这种情况下面的primay 和2nd 和使用SGSN-GGSN 下NSAPI 的Primary,secondary有没有区别)。
但是使用Gn interface, GTPV1的Forward Relocation Req消息中: 没有能直接给出有关NSAPI ,Linked NSAPI 和EBI 之间的绑定关系。
可能会根据Signallig Priority Indication with NSAPI来影响后面PGW的决定(MME 这时候不应该参与吧,毕竟用户面的是事情,MME作为接受方,这时候应该尽量维持住,由PGW根据和PCRF之间的Policy来决定,并根据优先级来选定default Bearer)。
> For each active PDN connection with S‑GW (using S4): | |||
Default bearer | Identifies the NSAPI of the default bearer, corresponding to the PDP context which was first established within the given PDN connection. | X | X |
欢迎光临 51学通信技术论坛 (http://51xuetongxin.com/bbs/) | Powered by Discuz! X2 |